
OA 3302
Winter 2003

Computer Lab 2: The Multiple Server Queue

Objectives

• Gain experience with Simkit
• Implement more complex model
• Re-use of ArrivalProcess class
• Communicating between objects with SimEventListener
• Communicate state changes by firing PropertyChangeEvent
• Use SimpleStatsTimeVarying to collect time-varying means

Description

In today's lab you will create a model of the Multiple Server (G/G/k) queue in Simkit. The model 
will re-use the Arrival process of Lab 01 and add the server functionality. You should not have to change 
any of the code in ArrivalProcess. You will write two classes: A Server class that will implement 
the server portion of the queue and a pure execution class (GGk) that will run the model for 1000 time units 
and collect statistics.

Writing the Server Class
The Event Graph to create the Server portion of the model is shown in Figure 1. The connection 

between the Arrival event of the Arrival component and the Arrival event of the Server component 
will be implemented using the addSimEventListener method, which will be described below.

Figure 1. Server Event Graph1

Define a class in the oa3302 package called Server extending SimEntityBase 2. Define the 
instance variables for your parameters and state variables as shown in Table1 on page2. As with the 
ArrivalProcess, your state variables should have getters but no setters, and the parameters will have 
both setters and getters. 

Next, write the first version of the “do” methods. As with the ArrivalProcess, each event in 
Figure 1 will correspond to a method with “do” prefixed (“doArrival()”, “doStartService()”, 
and “doEndService()”). You should also write a doRun()  method, which will be discussed below.

Your doArrival()  method should look like this (yours should be commented, of course):

1. The state variable N, incremented in the EndService event, is the number of customers who have been 
through the system.

2. Don’t forget to import simkit.*;

Start

Service

End

Service
Arrival

{Q++} {Q--, S--} {S++, N++}

(Q > 0)

(S > 0)

tS



2

public void doArrival() {
firePropertyChange("numberInQueue", numberInQueue, ++numberInQueue);
if (numberAvailableServers > 0) {

waitDelay("StartService", 0.0);
}

}

Note that the edge condition is implemented by wrapping the corresponding waitDelay() 
statement for the edge in an if test. Write the other “do” methods in a similar manner, making sure to 
associate each scheduling edge in Figure 1 with a call to waitDelay(). For now, hard-wire service 
times of 1.1; we’ll add the randomness in a bit. Do not proceed until your class compiles.

The reset() method is necessary in this class for setting the initial values of numberInQueue 
(to 0) and numberAvailableServers (to totalNumberServers). Whenever the value of a state 
variable changes, a PropertyChange event should be fired, as in the doArrival() method above. How-
ever, the initial values of state variables are set in reset() and firePropertyChange() is called in 
doRun()  for time-varying state variables (only). Thus, a part of your reset() method should look like 
this:

public void reset() {
super.reset();
numberInQueue = 0;
numberAvailableServers = totalNumberServers;

...
}

Add similar code for numberServed in reset(). The doRun() method should only fire 
property changes for the time-varying state variables (not numberServed):

public void doRun() {
firePropertyChange("numberInQueue", numberInQueue);
firePropertyChange("numberAvailableServers", numberAvailableServers);

}

Note that this form of firePropertyChange() has signature (String, int).

To complete the first iteration of your Server class, write a constructor that takes the total num-
ber of servers as an argument to its constructor and sets the totalNumberServers parameter to that 
value.

Now, write a pure execution class1 called GGk. The main method should:

1. Instantiate an ArrivalProcess (call it “arrival”). You can hard-wire your parameters 
(make it Exponential with mean of 1.7 and seed of 12345).

Table 1: Parameters and State Variables for Server Class

Parameters State Variables

serviceTime (RandomVariate) numberInQueue (int)

totalNumberServers (int) numberAvailableServers (int)

numberServed (int)a

a. This corresponds to the state N in Figure 1.

1. That is, a class consisting only of a main method.



3

2. Instantiate a Server (call it “server”). Pass it “2” in the constructor (for the number of serv-
ers).

3. Add server as a SimEventListener to arrival as follows (in main):
 arrival.addSimEventListener(server);

4. Invoke:
Schedule.stopAtTime(2.0); 
Schedule.reset(); 
Schedule.setSingleStep(true); 
Schedule.startSimulation();

5. Compile and run. Press Enter after each event. Your output should look like this:1

** Event List -- Starting Simulation **
0.000   Run
0.000   Run
2.000   Stop
 ** End  of Event List -- Starting Simulation **

Time: 0.000     Current Event: Run      [1]
 ** Event List --  **
0.000   Run
0.655   Arrival
2.000   Stop
 ** End  of Event List --  **

Time: 0.000     Current Event: Run      [2]
 ** Event List --  **
0.655   Arrival
2.000   Stop
 ** End  of Event List --  **

Time: 0.655     Current Event: Arrival  [1]
 ** Event List --  **
0.655   StartService
1.106   Arrival
2.000   Stop
 ** End  of Event List --  **

Time: 0.655     Current Event: StartService     [1]
 ** Event List --  **
1.106   Arrival
1.755   EndService
2.000   Stop
 ** End  of Event List --  **

Time: 1.106     Current Event: Arrival  [2]
 ** Event List --  **
1.106   StartService
1.755   EndService
2.000   Stop
3.866   Arrival

1. Note that there are two Run events at the beginning - one for arrival  and one for service .



4

 ** End  of Event List --  **

Time: 1.106     Current Event: StartService     [2]
 ** Event List --  **
1.755   EndService
2.000   Stop
2.206   EndService
3.866   Arrival
 ** End  of Event List --  **

Time: 1.755     Current Event: EndService       [1]
 ** Event List --  **
2.000   Stop
2.206   EndService
3.866   Arrival
 ** End  of Event List --  **

Time: 2.000     Current Event: Stop     [1]
 ** Event List --  **
               << empty >>
 ** End  of Event List --  **

The server object has had its Arrival event triggered by the arrival object’s Arrival event!

Now that you have a running program, you need to make the service times random. Add an 
instance variable of type RandomVariate 1 to generate the service times and add a RandomVariate 
argument to your constructor.

Modify the waitDelay() that schedules the EndService event to generate a random service 
time using the serviceTime object (just as in the ArrivalProcess class). You will have to change 
the instantiation in main to match the constructor.

You may hard-wire the service times in main() to use the gamma distribution. Recall that the 
gamma distribution has two parameters, α  and β, and that the mean and variance for a gamma random 
variable are  and , respectively. The Gamma random variable generator in Simkit takes  
and  as its parameters. So, in main() you will have to define an Object[] array containing them to 
pass to the Server constructor. One way to do this is:

Object[] parameters = new Object[] {new Double(2.5), new Double(1.2)};

Pass this as the second argument to RandomVariateFactory, with the string “Gamma” as the 
first argument. Use a seed of 54321, and two servers as above. Compile and execute to get the following 
output:

** Event List -- Starting Simulation **
0.000   Run
0.000   Run
2.000   Stop
 ** End  of Event List -- Starting Simulation **

Time: 0.000     Current Event: Run      [1]
 ** Event List --  **
0.000   Run
0.655   Arrival
2.000   Stop

1. Call it serviceTime

µ αβ= σ2 αβ2= α
β



5

 ** End  of Event List --  **

Time: 0.000     Current Event: Run      [2]
 ** Event List --  **
0.655   Arrival
2.000   Stop
 ** End  of Event List --  **

Time: 0.655     Current Event: Arrival  [1]
 ** Event List --  **
0.655   StartService
1.106   Arrival
2.000   Stop
 ** End  of Event List --  **

Time: 0.655     Current Event: StartService     [1]
 ** Event List --  **
1.106   Arrival
1.505   EndService
2.000   Stop
 ** End  of Event List --  **

Time: 1.106     Current Event: Arrival  [2]
 ** Event List --  **
1.106   StartService
1.505   EndService
2.000   Stop
3.866   Arrival
 ** End  of Event List --  **

Time: 1.106     Current Event: StartService     [2]
 ** Event List --  **
1.505   EndService
2.000   Stop
3.866   Arrival
5.082   EndService
 ** End  of Event List --  **

Time: 1.505     Current Event: EndService       [1]
 ** Event List --  **
2.000   Stop
3.866   Arrival
5.082   EndService
 ** End  of Event List --  **

Time: 2.000     Current Event: Stop     [1]
 ** Event List --  **
               << empty >>
 ** End  of Event List --  **

Collecting Statistics
At this point your model is complete, and you can now write a program that runs it for awhile and 

collects some statistics. Simkit provides a class in the simkit.stat package called SimpleStat-
sTimeVarying  that can estimate a time-varying mean from date. The mechanism for obtaining those 



6

values from your model uses the PropertyChangeEvent  that you fired at all your state changes. The 
three arguments of firePropertyChange() are as follows1: 

• The name of the property.
• The old value of the property.
• The new value of the property.

Modify GGk to run your model and collect statistics. After instantiating the ArrivalProcess and 
Server objects, instantiate an object of type SimpleStatsTimeVarying as follows: 

SimpleStatsTimeVarying niqStat = new SimpleStatsTimeVarying("numberInQueue");

The String passed to the constructor, “numberInQueue”, has the same name (case-sensitive) 
as the property that was fired in Server. Instantiate another one for numberAvailableServers . 
These should be done after the Server and ArrivalProcess objects are instantiated but before the 
Simulation methods are invoked. Finally, add each instance to the server as a PropertyChangeLis-
tener. For example,

server.addPropertyChangeListener(niqStat);

with the other being similar.

When this compiles and works for short runs, set it to stop at time 1000.0, set the verbose/single-
step mode to false, and output the mean values after the run. Use the getMean() method of Sim-
pleStats (see the javadoc for further details about SimpleStatsTimeVarying). The average utili-
zation is defined to be 1.0 - (avg # available servers) / total number of servers. The code to echo back the 
parameters of the model should be written in main before Schedule.startSimulation() ; the 
code to write the output statistics should also be in main but come after Schedule.startSimula-
tion(). Your final output should look like this:2

Multiple Server Queue with 2 servers

Service time distribution is Gamma (2.5, 1.2)

Arrival Process with Exponential (1.7) interarrival times

Simulation ended at time         1000.0000

There have been 614 customers arrive to the system

There have been 607 customers served

Average Number in Queue          4.0739

Average Utilization              0.9166

To get this output, use the getter methods from Server as well as getMean()  from Sim-
pleStatsTimeVarying. The simulated time should be obtained using Schedule.getSim-
Time().

To get the first two lines, write a method called paramString()  in Server that returns a String 
as follows:

public String paramString() {
return "Multiple Server Queue with " + totalNumberServers + " servers" +

1. There is additionally the two-parameter version you wrote in doRun(). The two-parameters version 
has just the name of the property and the new value.

2. Use java.text.DecimalFormat to format the numbers to the desired decimal places.



7

            "\n\nService time distribution is " + serviceTime;
    }

Write a similar paramString() method for ArrivalProcess to get the next line in the output.

Deliverables

Turn in the code for your Server and GGk classes and hard copy of your two outputs (the last 
verbose output and the one that collects statistics. You do not have to turn in the source code for your 
ArrivalProcess class from before.

Frequently Asked Questions

What does addSimEventListener do?
After the listenee executes an event from the Event List, it passes that event to the listener. If the 

listener has an event that matches, then that event is executed. In this program, the Server  instance has 
its Arrival event triggered by the ArrivalProcess’s Arrival event.

What’s with all this firePropertyChange stuff?
Simkit can exploit the JavaBeans property listener pattern by having only those objects who are 

“interested” in a given property registering that interest and receiving a PropertyChangeEvent when 
the property changes value. The firePropertyChange() method dispatches a PropertyChan-
geEvent  to all registered listeners for the object with the property. Although this is a little more work 
now, the property change listener pattern makes things much easier down the road.


